Ejercicios y problemas


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios y problemas"

Transcripción

1 Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de para invertir de un espacio con una capacidad limitada para pollos. Cada pollo de la raza A le cuesta 1 obtiene con él un beneficio de 1, cada pollo de la raza B le cuesta 2 el beneficio es de 1,4 por unidad. Si por razones comerciales el número de pollos de la raza B no puede ser superior a los de la raza A, determina, justificando la respuesta: a) qué cantidad de ambas razas debe comprar el granjero para obtener un beneficio máimo? b) cuál será el valor de dicho beneficio? Raza A Raza B Nº de unidades Ó 0; Ó 0 Capacidad + Ì Coste inicial Ì Razones comerciales Ì Beneficios 1,4 f(, ) = + 1,4 Maimizar b) Región c) Valores de la función objetivo en los vértices de la región ò f(0, 0) = 0 + 1,4 0 = 0 + = = = A(7 000, 0) ò f(7 000, 0) = ,4 0 = B(5 000, 2 000) ò f(5 000, 2 000) = = , = Máimo C(3 000, 3 000) ò f(3 000, 3 000) = = , = C(3 000, 3 000) B(5 000, 2 000) A(7 000, 0) d) La solución óptima es B(500, 2000) a) Debe comprar pollos de la raza A pollos de la raza B b) Un vendedor dispone de dos tipos de pienso,a B, para alimentar ganado. Si mezcla a partes iguales los dos piensos, obtiene una mezcla que vende a 0,15 /kg; si la proporción de la mezcla es de una parte de A por 3 de B, vende la mezcla resultante a 0,1 /kg. El vendedor dispone de 100 kg de pienso del tipo A de 210 kg del tipo B. Desea hacer las dos mezclas de modo que sus ingresos por venta sean máimos. a) Plantea el problema dibuja la región b) Halla cuántos kilos de cada mezcla deben producirse para maimizar los ingresos, calcula dicho ingreso. Mezcla 1 a 1 Mezcla 1 a 3 Nº de kg Ó 0; Ó 0 Pienso tipo A + Ì 100 Pienso tipo B Ì 210 Ingresos 0,15 0,1 f(, ) = 0,15 + 0,1 Maimizar 160 SOLUCIONARIO

2 b) Región c) Valores de la función objetivo en los vértices de la región + = 100 ò f(0, 0) = 0, ,1 0 = 0 A(100, 0) ò f(100, 0) = 0, ,1 0 = = 15 Máimo + 3 = 210 C(0, 70) B(45, 55) ò f(45, 55) = 0, ,1 55 = 12,25 B(45, 55) C(0, 70) ò f(0, 70) = 0, ,1 70 = 7 d) La solución óptima es B(45, 55), 45 kg de la mezcla 1 de 1 55 kg de la mezcla 1 de A(100, 0) 30. Los alumnos de un centro educativo pretenden vender dos tipos de lotes,a B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecadas cinco participaciones de lotería, cada lote del tipo B consta de dos cajas de mantecadas dos participaciones de lotería. Por cada lote de tipo A vendido, los alumnos obtienen un beneficio de 12,25 ; por cada lote de tipo B ganan 12,5 Por razones de almacenamiento, pueden disponer a lo sumo de 400 cajas de mantecadas. Los alumnos solo cuentan con participaciones de lotería desean maimizar sus beneficios. a) Determina la función objetivo epresa mediante inecuaciones las restricciones del problema. b) Cuántas unidades de cada tipo de lote deben vender los alumnos para que el beneficio obtenido sea máimo? Calcula dicho beneficio. Nº de lotes Cajas de mantecados Participaciones de lotería Beneficios Lote A Lote B Ó 0; Ó Ì Ì ,25 12,5 f(, ) = 12, ,5 Maimizar b) Región c) Valores de la función objetivo en los vértices de la región ò f(0, 0) = 12, ,5 0 = 0 A(240, 0) ò f(240, 0) = 12, ,5 0 = = B(200, 100) ò f(200, 100) = 12, ,5 100 = = Máimo C(0, 200) ò f(0, 200) = 12, ,5 200 = = 400 C(0, 200) d) La solución óptima es B(200, 100), 200 del lote A 100 B(200, 100) del lote B. El beneficio es A(240, 0) 31. Cada mes una empresa puede gastar, como máimo, en salarios en energía (electricidad gasoil). La empresa solo elabora dos tipos de productos A B. Por cada unidad de A que elabora gana 0,8 ; por cada unidad de B gana 0,5. El coste salarial energético que acarrea la elaboración de una unidad del producto A de una unidad del producto B aparece en la siguiente tabla: Se desea determinar cuántas unidades de cada uno de los productos A B debe producir la empresa para que el beneficio sea máimo. Coste salarial Coste energético Producto A 2 0,1 Producto B 1 0,3 TEMA 5. PROGRAMACIÓN LINEAL 161

3 Ejercicios problemas Producto A Nº de unidades Producto B Coste salarial 2 b) Región c) Valores de la función objetivo en los vértices de la región ò f(0, 0) = 0, ,5 0 = 0 A(5 000, 0) ò f(5 000, 0) = 0, ,5 0 = B(2 400, 5 200) ò f(2 400, 5 200) = 2 + = = 0, , = Máimo C(0, 6 000) ò f(0, 6 000) = 0, , = Ó 0; Ó Ì Coste energético 0,1 0,3 0,1 + 0,3 Ì Beneficios 0,8 0,5 f(, ) = 0,8 + 0,5 Maimizar C(0, 6 000) B(2 400, 5 200) ,1 + 0,3 = A(5 000, 0) d) La solución óptima es B(2 400, 5 200) 32. En un depósito se almacenan bidones de petróleo gasolina. Para poder atender la demanda se han de tener almacenados un mínimo de 10 bidones de petróleo 40 de gasolina. Siempre debe haber más bidones de gasolina que de petróleo, la capacidad del depósito es de 200 bidones. Por razones comerciales, deben mantenerse en inventario, al menos, 50 bidones. El gasto de almacenaje de un bidón de petróleo es de 0,2 el de uno de gasolina es de 0,3. Se desea saber cuántos bidones de cada clase han de almacenarse para que el gasto de almacenaje sea mínimo. Bidones Mínimo de petróleo Petróleo Gasolina Ó 0; Ó 0 Ó 10 Mínimo de gasolina Ó 40 Relación gasolina-petróleo Ó Capacidad máima + Ì 200 Razones comerciales + Ó 50 Coste 0,2 0,3 f(, ) = 0,2 + 0,3 Minimizar b) Región c) Valores de la función objetivo en los vértices de la región + = 200 = 10 A(40, 40) ò f(40, 40) = 0, ,3 40 = 20 C(10, 190) B(100, 100) ò f(100, 100) = 0, ,3 100 = 50 = C(10, 190) ò f(10, 190) = 0, ,3 190 = 59 D(10, 40) ò f(10, 40) = 0, ,3 40 = B(100, 100) = 14 Mínimo + = 50 d) La solución óptima es D(10, 40) D(10, 40) A(40, 40) = SOLUCIONARIO

4 33. Un agricultor cosecha garbanzos lentejas. Se sabe que, a lo sumo, solo se pueden cosechar 500 toneladas métricas (Tm), de las que, como máimo, 200 Tm son lentejas. Los beneficios por Tm de garbanzos lentejas son de ,respectivamente, desea planificar la producción para optimizar el beneficio total. a) Formula el sistema de inecuaciones asociado al enunciado del problema la función objetivo del mismo. b) Representa gráficamente la región factible calcula sus vértices. c) Cuántas Tm de garbanzos cuántas de lentejas debe cosechar para obtener el máimo beneficio? Garbanzos Nº de Tm Lentejas Tope de cosecha b) Región c) Valores de la función objetivo en los vértices de la región + = 500 ò f(0, 0) = = 0 A(500, 0) ò f(500, 0) = = = Máimo B(300, 200) ò f(300, 200) = = C(0, 200) B(300, 200) = = 200 C(0, 200) ò f(0, 200) = = Ó 0; Ó 0 + Ì 500 Tope de lentejas Ì 200 Beneficios f(, ) = Maimizar A(500, 0) d) La solución óptima es B(500, 0), es decir, 500 Tm de garbanzos 0 Tm de lentejas. 34. Cierta sala de espectáculos tiene una capacidad máima de personas entre adultos niños, aunque el número de niños asistentes no puede superar los 600. El precio de la entrada de un adulto a una sesión es de 8, mientras que la de un niño es de un 40% menos. El número de adultos no puede superar al doble del número de niños. Cumpliendo las condiciones anteriores, cuál es la cantidad máima que se puede recaudar por la venta de entradas? Cuántas de las entradas serán de niños? Personas Niños Adultos Niños Ó 0; Ó 0; + Ì Ì 600 Condición adultos Ì 2 Recaudación 8 4,8 f(, ) = 8 + 4,8 Maimizar b) Región c) Valores de la función objetivo en los vértices de la región ò f(0, 0) = ,8 0 = 0 + = A(1 000, 500) ò f(1 000, 500) = ,8 500 = = Máimo = 2 B(900, 600) ò f(900, 600) = ,8 600 = C(0, 600) ò f(0, 600) = ,8 600 = = C(0, 600) 200 B(900, 600) A(1 000, 500) d) La solución óptima es A(1 000, 500), es decir, entradas de adulto 500 entradas de niño. TEMA 5. PROGRAMACIÓN LINEAL 163

5 Ejercicios problemas 35. Un grupo musical va a lanzar un nuevo trabajo al mercado. La casa discográfica considera necesario realizar una campaña intensiva de publicidad, combinando dos publicidades: anuncios en televisión, con un coste estimado de por anuncio, cuñas radiofónicas, con un coste estimado de por cuña. No obstante, no pueden gastar más de un millón de euros para dicha campaña, a lo largo de la cual se tienen que emitir, al menos, 50 cuñas, pero no más de 100. Un estudio de mercado cifra en el número de copias que se venderá por anuncio de televisión emitido, en el número de copias por cuña radiofónica emitida. a) De cuántos anuncios cuñas radiofónicas podrá constar esta campaña? Plantea el problema representa gráficamente el conjunto de soluciones. b) Qué combinación de ambos se debería realizar para vender el maor número de copias posibles? Se llega a gastar el millón de euros? b) Región c) Valores de la función objetivo en los vértices de la región A(0, 50) ò f(0, 50) = = = B(95, 50) ò f(95, 50) = = = C(90, 100) ò f(90, 100) = = = Máimo = 100 D(0, 100) C(90, 100) D(0, 100) ò f(0, 100) = = = = A(0, 50) 20 B(95, 50) Anuncios TV Nº de unidades Cuñas de radio Límite campaña Ó 0; Ó Ì Cuñas 50 Ì Ì 100 Ventas f(, ) = Maimizar d) La solución óptima es el vértice C(90, 100). Sí se gastan el Una fábrica de coches va a lanzar al mercado dos nuevos modelos, uno básico otro de lujo. El coste de fabricación del modelo básico es de el del modelo de lujo es de Se dispone de un presupuesto de para esta operación de lanzamiento. Para evitar riesgos se cree conveniente lanzar al menos tantos coches del modelo básico como del modelo de lujo, en todo caso, no fabricar más de 45 coches del modelo básico. a) Cuántos coches interesa fabricar de cada modelo si el objetivo es maimizar el número de coches fabricados? b) Se agota el presupuesto disponible? Modelo básico Modelo de lujo Nº de unidades Ó 0; Ó 0 Coste fabricación Ì Condiciones Ó Modelo básico Ì 45 Nº de coches f(, ) = + Maimizar 164 SOLUCIONARIO

6 b) Región c) Valores de la función objetivo en los vértices de la región = 45 ò f(0, 0) = = = A(45, 0) ò f(45, 0) = = 45 = B(45, 10) ò f(45, 10) = = 55 Máimo C(24, 24) ò f(24, 24) = = 48 C(24, 24) B(45, 10) d) La solución óptima es B(45, 10), es decir, 45 coches del modelo básico 10 coches del modelo de lujo. Se agota el presupuesto. 5 5 A(45, 0) 37. Por motivos de ampliación de plantilla, una empresa de servicios de traducción quiere contratar, a lo sumo, 50 nuevos traductores. El salario que ha de pagar a cada traductor de una lengua es de 2 000, de a los que son de más de una lengua. Como poco, por motivos de demanda, dicha empresa tiene que contratar a la fuerza a un traductor de más de una lengua. La política de selección de personal de la compañía obliga también a contratar al menos a tantos traductores de una lengua como de más de una. Sabiendo que el objetivo fijado de beneficios totales es, como mínimo, de , que los beneficios que aportan los traductores de una lengua son de /traductor, de /traductor los de más de una lengua: a) cuántos traductores de cada tipo puede contratar? Plantea el problema representa gráficamente el conjunto de soluciones. b) cuántos traductores contratará para minimizar el gasto en salarios? Qué beneficios totales tendrá la empresa en este caso? Traductor de 1 lengua Nº de traductores Motivos de demanda Traductor de más de 1 lengua Ó 0; Ó 0; + Ì 50 Ó 1 Política de selección Ó Mínimos beneficios Ó Ganancias f(, ) = Minimizar b) Región c) Valores de la función objetivo en los vértices de la región + = 50 A(28, 1) ò f(28, 1) = = B(49, 1) ò f(49, 1) = = = C(25, 25) ò f(25, 25) = = = D(10, 10) ò f(10, 10) = = C(25, 25) = Mínimo = = 1 5 D(10, 10) 5 A(28, 1) B(49, 1) d) La solución óptima es D(10, 10), es decir, 10 traductores de cada tipo. Los beneficios totales son: = TEMA 5. PROGRAMACIÓN LINEAL 165

7 Ejercicios problemas 38. Un agricultor puede sembrar trigo (5 hectáreas como máimo) centeno (7 hectáreas como máimo) en sus tierras. La producción de trigo, por cada hectárea sembrada, es de 5 toneladas, mientras que la producción de centeno, también por hectárea sembrada, es de 2 toneladas, puede producir un máimo de 29 toneladas de los dos cereales. Si el beneficio que obtiene el agricultor por cada tonelada de trigo es de 290 el beneficio por cada tonelada de centeno es de 240, qué número de hectáreas ha de sembrar de cada cultivo para maimizar los beneficios? b) Región c) Valores de la función objetivo en los vértices de la región = 5 C(3, 7) = 7 ò f(0, 0) = = 0 A(5, 0) ò f(5, 0) = = D(0, 7) B(5, 2) ò f(5, 2) = = C(3, 7) ò f(3, 7) = = = Máimo B(5, 2) D(0, 7) ò f(0, 7) = = = 29 d) La solución óptima es C(3, 7), es decir, 3 hectáreas de trigo 7 de centeno. 1 A(5, 0) Trigo Nº de hectáreas Condición 1 Centeno Ó 0; Ó 0 Ì 5 Condición 2 Ì 7 Producción Ì 29 Beneficios f(, ) = Maimizar 39. El número de unidades de dos productos (A B) que un comercio puede vender es, como máimo, igual a 100. Dispone de 60 unidades de producto de tipo A, con un beneficio unitario de 2,5, de 70 unidades tipo B con un beneficio de 3.Determina cuántas unidades de cada tipo de productos A B debe vender el comercio para maimizar sus beneficios globales. Producto A Nº de unidades Unidades de A Producto B Ó 0; Ó 0 Máimo + Ì 100 Ì 60 Unidades de B Ì 70 Beneficios 2,5 3 f(, ) = 2,5 + 3 Maimizar b) Región + = 100 c) Valores de la función objetivo en los vértices de la región = 60 ò f(0, 0) = 2, = 0 C(30, 70) = 70 A(60, 0) ò f(60, 0) = 2, = 150 B(60, 40) ò f(60, 40) = 2, = 270 D(0, 70) C(30, 70) ò f(30, 70) = 2, = = 285 Máimo B(60, 40) D(0, 70) ò f(0, 70) = 2, = A(60, 0) d) La solución óptima es C(30, 70), es decir, 30 unidades del producto A 70 unidades del producto B 166 SOLUCIONARIO

8 40. Un comerciante desea comprar dos tipos de lavadoras, A B. Las de tipo A cuestan 450, las de tipo B, 750. Dispone de de sitio para 20 lavadoras,, al menos, ha de comprar una de cada tipo. Cuántas lavadoras ha de comprar de cada tipo para obtener beneficios máimos con su venta posterior, sabiendo que en cada lavadora gana el 20% del precio de compra? Nota: se recuerda que el número de lavadoras de cada tipo ha de ser entero. Ganancia por cada lavadora del tipo A: 450 0,2 = 90 Cada hectárea de centeno produce: 750 0,2 = 150 Tipo A Tipo B Nº de lavadoras Ó 0; Ó 0; + Ì 20 Condición 1 Ó 1 Condición 2 Ó 1 Dispone Ì Beneficios f(, ) = Maimizar b) Región c) Valores de la función objetivo en los vértices de la región A(1, 1) ò f(1, 1) = = = 20 = 1 B(19, 1) ò f(19, 1) = = C(15, 5) ò f(15, 5) = = = = Máimo D(1, 67/5) D(1, 67/5) ò f(1, 67/5) = /5 = = Máimo = 1 2 A(1, 1) 2 C(15, 5) B(19, 1) d) La solución óptima son los vértices C(15, 5) D(1, 67/5), por tanto también lo son todos los puntos del segmento de etremos C D. Pero las soluciones tienen que ser números enteros, por tanto las únicas soluciones son C(15,5), E(10, 8) F(5, 11) 41. Una empresa se dedica a la fabricación de frascos de perfume de agua de colonia, a partir de tres factores productivos, F 1,F 2 F 3. Las unidades de dichos factores utilizadas en la producción de cada tipo de frasco se detallan en la siguiente tabla: Sabiendo que el precio de venta de un frasco de perfume es de 50, el de uno de agua de colonia es de 20, que la empresa dispone de 240 unidades de F 1, 360 de F de F 3 : a) calcula el número de frascos de cada tipo que debe fabricar la empresa para maimizar sus beneficios. Eplica los pasos seguidos para obtener la respuesta. b) se consumen todas las eistencias de F 1,F 2 F 3 en la producción de los frascos que maimiza los beneficios? Perfume F 1 1 Agua de colonia F F Perfume Agua de colionia Nº de frascos Ó 0; Ó 0 Factor productivo F Ì 240 Factor productivo F Ì 360 Factor productivo F Ì 440 Beneficio f(, ) = Maimizar TEMA 5. PROGRAMACIÓN LINEAL 167

9 Ejercicios problemas b) Región c) Valores de la función objetivo en los vértices de la región 2 = 360 ò f(0, 0) = = 0 A(180, 0) ò f(180, 0) = = B(180, 30) ò f(180, 30) = = = Máimo + 2 = 240 C(20, 110) 4 = 440 C(20, 110) ò f(20, 110) = = D(0, 110) D(0, 110) ò f(0, 110) = = O(0,0) 20 A(180, 0) B(180, 30) d) La solución óptima es B(180, 30), es decir, 180 perfumes 30 unidades de agua de colonia. No se consumen todas las eistencias. 42. Un concesionario de coches vende dos modelos: el A, con el que gana por unidad vendida, el B, con el que gana 500 por unidad vendida. El número de coches vendidos del modelo A debe verificar que 50 Ì Ì 75. El número de coches vendidos del modelo B debe ser maor o igual que el número de coches vendidos del modelo A. Sabiendo que el máimo de coches que puede vender es 400, determina cuántos coches debe vender de cada modelo para que su beneficio sea máimo. Modelo A Nº de unidades Limitaciones modelo A Modelo B b) Región c) Valores de la función objetivo en los vértices de la región = 50 = 75 A(50, 50) ò f(50, 50) = = = 400 B(75, 75) ò f(75, 75) = = = C(75, 325) ò f(75, 325) = = D(50, 350) C(75, 325) = Máimo D(50, 350) ò f(50, 350) = = = Ó 0; Ó 0 50 Ì Ì 75 Condición Ì Máimo + Ì 400 Beneficio f(, ) = Maimizar A(50, 50) B(75, 75) d) La solución óptima es C(75, 325), es decir, 75 coches del modelo A 325 del modelo B 43. Un cliente de un banco dispone de para adquirir fondos de inversión. El banco le ofrece dos tipos de fondos, A B. El de tipo A tiene una rentabilidad del 12% unas limitaciones legales de de inversión máima; el del tipo B presenta una rentabilidad del 8% sin ninguna limitación.además, este cliente desea invertir en los fondos tipo B, como máimo, el doble de lo invertido en los fondos tipo A. a) Qué cantidad de dinero debe invertir en cada tipo de fondo para obtener un beneficio máimo? b) Cuál será el valor de dicho beneficio máimo? 168 SOLUCIONARIO

10 Dinero invertido Limitaciones legales b) Región c) Valores de la función objetivo en los vértices de la región = ò f(0, 0) = 0, ,08 0 = 0 A(12 000, 0) ò f(12 000, 0) = = 2 = 0, ,08 0 = 1440 B(12 000, ) ò f(12 000, ) = + = = 0, , = Máimo C(10 000, ) ò f(10 000, ) = = 0, , = C(10 000, ) B(12 000, ) A(12 000, 0) Fondo tipo A Fondo tipo B Ó 0; Ó 0 Capital pendiente + Ì Ì Desea 2 Ó Beneficio 0,12 0,08 f(, ) = 0,12 + 0,08 Maimizar d) La solución óptima es B(12 000, ), es decir, en fondos del tipo A en fondos del tipo B El beneficio máimo es Para profundizar 44. En un problema de programación lineal la región factible es el pentágono conveo que tiene de vértices los puntos:, P(0, 4), Q(3/2, 3), R(5/2, 2) S(11/4, 0), la función objetivo que ha que maimizar es F(, ) = 2 + a (a es un número real positivo). a) Dibuja la región b) Halla el vértice, o punto etremo, del mismo en el que la función objetivo alcanza el máimo para a = 1/2 c) Encuentra un valor de a para que el máimo se alcance en el punto (0, 4) a) Región b) Valores de la función objetivo en los vértices de la región ò f(0, 0) = ,5 0 = 0 P(0, 4) ò f(0, 4) = ,5 4 = = 12 P(0, 4) Q(3/2, 3) ò f(3/2, 3) = 2 3/2 + 0,5 3 = 4,5 R(5/2, 2) ò f(5/2, 2) = 2 5/2 + 0,5 2 = 6 Máimo Q(3/2, 3) S(11/4, 0) ò f(11/4, 0) = 2 11/4 + 0,5 0 = 5,5 La solución óptima es R(5/2, 2) R(5/2, 2) 0,5 c) La recta que pasa por P Q es = 12. Siempre que a Ó 3 el máimo será P(0, 4). Si a = 3, el máimo se alcanza en todos los puntos del segmento PQ. Para 0,5 S(11/4, 0) a > 3, el máimo se alcanza en P(0, 4). TEMA 5. PROGRAMACIÓN LINEAL 169

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización.

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. 001 00 00 004 005 006 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

Unidad 7 Aplicación de máximos y mínimos

Unidad 7 Aplicación de máximos y mínimos Unidad 7 Aplicación de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Interpretará el concepto de ingreso y costos marginal. Aplicará la función de ingresos en problemas de maimización. Aplicará

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

Resolución CON LÁPIZ Y PAPEL apartado (a)

Resolución CON LÁPIZ Y PAPEL apartado (a) DP. - S - 5119 2007 Matemáticas ISSN: 1988-379X 007 Diego desea repartir su tiempo de vacaciones entre dos lugares ( y ). El día de estancia en le cuesta 100 mientras que en 200. Su presupuesto global

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas.

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas. Junio 94 a) Puede fabricar: 12/7 de modelo a y 12/7 del modelo B 10 del modelo A y 10 del B 20 del modelo A y 10 del B 20 del modelo A y 0 del B 4 del modelo A y 0 del B b) Debe vender 20 coches de tipo

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

Las fracciones. 1. Concepto de fracción. Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una?

Las fracciones. 1. Concepto de fracción. Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? Las fracciones. Concepto de fracción Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? P I E N S A Y C A L C U L A / Carné calculista 0 : C = 8; R = A P L

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo:

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: EJEMPLO. Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: limento Calorías Proteínas (gr Precio (ptas B allar el coste mínimo de una dieta formada sólo por este tipo de alimentos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 11, por la modalidad de libre escolaridad,

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal Ministerio de Educación Nuevo Bachillerato Ecuatoriano Programación lineal Con el fin de motivar a sus estudiantes, un profesor de Matemática decide proporcionarles dos paquetes de golosinas: uno con 2

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1 PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1. - Se han comprado 115 litros de vino por 69 euros. Cuál es el beneficio que se obtiene en cada litro de vino, si se vende a 1,5 euros el litro?. 2.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema a+ y+ 3z = 0 + ay+ 2z = 1 + ay+ 3z = 1 a) (2 puntos). Discutir

Más detalles

CAPITULO 4: OPTIMIZACIÓN

CAPITULO 4: OPTIMIZACIÓN CAPITULO 4: OPTIMIZACIÓN Optimización es el proceso de hallar el máimo o mínimo relativo de una función, generalmente sin la auda de gráficos. 4.1 Conceptos claves A continuación se describirá brevemente

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados Isaac Musat Hervás 22 de noviembre de 2015 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista Fracciones y números decimales. Operaciones con fracciones Realiza mentalmente las siguientes operaciones: + c) 0 c) P I E N S A Y C A L C U L A Carné calculista : C = ; R = Calcula mentalmente: + c) c)

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y PROGRAMACIÓN LINEAL Jun.08) Una compañía de telefonía móvil quiere celebrar una jornada de Consumo razonable y ofrece a sus clientes la siguiente oferta: 15 céntimos de euro por cada mensaje SMS y 25 céntimos

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía, de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24 CUADERNO DE VERANO º ESO FRACCIONES. Efectúa las siguientes operaciones: a) 0 9 9 b) 0 0 7 c) d) 8 e) 7 9 : f) 9 9 7 : : ) El aire es una mezcla de gases. En la capa más próima a la superficie de la Tierra,

Más detalles

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Selectividad Septiembre 2006 SEPTIEMBRE 2006 Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

TP1 Programación Lineal - 2009

TP1 Programación Lineal - 2009 Problema Trabajo Práctico Nº 1 de cerdo. Una carnicería 1 La carne prepara vaca hamburguesas contiene 80% con de carne una combinación y 20% de grasa de carne y le molida cuesta de $5 vaca el kilo, y carne

Más detalles

4Soluciones a los ejercicios y problemas

4Soluciones a los ejercicios y problemas PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles
Ending Soon | Rispondi | BuzzFeedVideo